RV Battery Basics

RV battery types - updated October 2019

RV batteries store energy from your solar modules, the tow vehicle or RV’s alternator or from grid or generator power via a battery charger. There are various types of battery:

  • Flooded: now confined mainly to large property systems, flooded batteries need routinely topping up with distilled water. If well maintained they have the longest lifespan but are not suitable for RVs (they also emit corrosive gasses).
  • Valve regulated lead acid: misleadingly also called ‘sealed’, these are by far the most commonly-used batteries. They are similar to flooded batteries but sealed in normal use. They have vents that release gas (hydrogen) in the event of a major fault causing excess pressure. This necessitates their having a well ventilated enclosure. As with all lead acid batteries, they dislike deep discharging - their lifespan is substantially reduced if routinely discharged below 50%. These batteries vary in price but are generally the cheapest. They are ideal for a quick 'around Australia' but are bulky and heavy. 
  • Gel batteries: these have the electrolyte (conducting solution) in wax-like form. Gel batteries can be discharged slightly more deeply than those above, and cost more than valve regulated batteries. They have a loyal following but (in RV Books opinion) AGM batteries have similar benefits but are more rugged.
  • AGM batteries: designed initially for military use, their electrolyte is held within a glass-fibre matrix. AGMs are sealed, rugged and maintenance free, but even heavier (12 volt ones are about 33 kg per 100 amp hours). They charge faster than other lead acid batteries, but routinely  discharging below 50% discharge also shortens their life. A major benefit is that they retain much of their charge (without internal damage) if unused for a year or so. They are significantly more costly than basic lead acid batteries but a good buy if travelling extensively off-road - or for RVs not in frequent use. They should not be left on 'trickle charge' when not in use as their self-discharge is tiny..
  • Crystal: these are a newish form of lead aid battery (so far made by only one company). Their main claimed benefit is a yet to be proven life span of 18 years.

All the above need up to 14.4 volts to charge – but deliver only 12.8 -11.4 volts (and less when under heavy load.

  • Lithium-iron: made in various forms, those used in RVs are LiFePO4 (their chemical make-up – not a trade name). LiFePO4 batteries are about one-third the size and weight of conventional batteries with similar nominal capacity. If fully charged, about 80% of their capacity is safely available. This is far more than other commercially available batteries. Because of this a 100 amp-hour LiFePO4 is comparable to at least a 130 amp-hour much else. They can deliver and charge at massively high rates. Another plus is that their output (in RV use) stays at 13-12.9 volts over 90% of their range. This puts a total end to the lights flickering as the fridge cycles on and off.

Be aware, however, that where size and weight is not an issue (as in coach conversions), a 350 Ah and above AGM battery bank will do the same job at a third of the price. A LiFePO4 is, however, well worth considering for smaller and lighter RVs.

LiFePO4 batteries need specialised charging and individual cell monitoring. They are still a specialist product and need specialised knowledge to install, but most auto-electricians will be able to assist .

Despite some claims to the contrary, most need a specialised charger, or one that specifically includes a LiFePO4 program.

It is difficult to forecast the future of LiFePO4 batteries as other forms of batteries with similar characteristics are under development (as are fuel cells) but for RV use generally a LiFePO4's far smaller volume and weight is a strong argument for their use. 


Battery Location

As with anything heavy, a camper trailer or conventional caravan (for stability reasons), the battery, or battery bank, should be located as close to (and ideally just in front of) the axle/s. It should never at its rear and preferably not on the A-frame.

It is advisable, and often now essential, to use a specialised alternator charger to reduce the effect of voltage drop. To ensure the optimum charging regime is maintained; that unit must be located as close to the batteries as possible, but preferably not in the same compartment.

Whilst some RV makers ignore this, most battery makers insist that battery ventilation is still vital. They advise having a vent at the extreme top and bottom of the battery compartment. There are no industry standards regarding this. General practice, however, is to provide a few 25-50 mm holes at the top and likewise at the very bottom - or use the stainless steel vents available from boat chandlers.

If external, the compartment door should be of a light colour, and heat insulated. This compartment too must be ventilated as above.

Campervans and motor homes need the battery bank be as close to the alternator as feasible, but well away from exhaust heat. Batteries must be connected to the alternator via at least 10 square mm cable (ideally heavier). It is advisable, and with post-2014 variable voltage alternators essential, to use a specialised dc-dc alternator charger made for this purpose. Many need a specialised low-voltage version.

This topic is covered in depth in our book Caravan & Motorhome Electrics. This is now available in both print and digital form. The digital version can be downloaded right now by clicking on that title. Our print version is stocked by all Jaycar stores throughout Australia and New Zealand. It can also be ordered (via email) for delivery to anywhere on Earth from booktopia.com.au

Battery Capacity

Battery makers specify capacity in amp hours (energy used over time). As most RV batteries are 12 volt (and watts equal amps times volts), to convert amp hours to watt hours multiply by 12 (or for 24 volt systems by 24).

Batteries can be seen as like (fee-charged) bank accounts. They hold that paid in, less that drawn out. They also lose a bit internally – from 15%-20% for lead acids to 1%-2% for LiFePO4.

As with bank accounts, you cannot store or use more than you pay in, and you incur overhead fees if you have an additional account. Adding another battery, without increasing the energy generated,  is thus like adding a further bank account for the same total income. It will lose more of that stored because of the now increased loses of storing it.

The above is widely misunderstood. Auto electricians say that RVs owners who run out of 12 volt power almost always seek an extra battery. But doing so only works if there is excess energy to charge it.

A good indication is to limit battery capacity (or increase charge ability) to that which you can fully charge most sunny days year-around by noon. This typically requires at least 250 watts of solar per 100 amp hours of battery capacity. There is no upper safe limit to charging capacity. Alternator and solar regulators control charging voltage and, within reason, batteries self- limit that charge. Any LiFePO4 battery over 10 amp hours will happily accept higher charge current than you are ever likely to be able to supply.

If space and weight permits, have as much solar capacity as possible, together with batteries that suit your pocket, available weight carrying ability and your needs. Do not mix battery types nor add new batteries to other than close to almost new ones of identical capacity and type.

A few RV owners use a generator to run a CPAP (sleep apnoea) machine at night. It is better and far cheaper to use a generator or solar charge a truly reliable battery during the day and run it from that.

This topic is covered in depth in our constantly updated Caravan & Motorhome Electrics. The book is buyable (and downloadable) in digital form from our Bookshop - or in a print version (via email) from booktopia.com.au - all Jaycar stores and almost all bookshops throughout Australia. 

why not buy a book?

This article is based on content from our featured RV books. These books contain extensive information on a range of topics of interest to RV users and potential buyers. By purchasing a book, you are not only educating yourself but also supporting the work of independent RV writers. If you have found this article useful, please also visit the RV Bookshop.

 

This product has been added to your cart

CHECKOUT